4A, 2.2MHz, Synchronous Step-Down DC-DC Converter

General Description

The MAX16962 is a high-efficiency, synchronous stepdown converter that operates with a 2.7 V to 5.5 V input voltage range and provides a 0.8 V to 3.6 V output voltage range. The wide input/output voltage range and the ability to provide up to 4A to load current make this device ideal for on-board point-of-load and post-regulation applications. The MAX16962 achieves $-3.7 \% /+2.6 \%$ output error over load, line, and temperature ranges.
The MAX16962 features a 2.2 MHz fixed-frequency PWM mode for better noise immunity and load transient response, and a pulse frequency modulation mode (SKIP) for increased efficiency during light-load operation. The 2.2 MHz frequency operation allows for the use of all-ceramic capacitors and minimizes external components. The optional spread-spectrum frequency modulation minimizes radiated electromagnetic emissions.

Integrated low RDSON switches improve efficiency at heavy loads and make the layout a much simpler task with respect to discrete solutions.
The MAX16962 is offered with factory-preset output voltages or with an adjustable output voltage. (See the Selector Guide for options). Factory preset output voltage versions allow customers to achieve -3.7\%/+2.6\% output voltage accuracy without using external resistors, while the adjustable output voltage version provides the flexibility to set the output voltage to any desired value between 0.8 V to 3.6 V using an external resistive divider.
Additional features include 8 ms soft-start, 16 ms powergood output delay, overcurrent, and overtemperature protections.
The MAX16962 is available in thermally enhanced 16-pin TSSOP-EP and $4 \mathrm{~mm} \times 4 \mathrm{~mm}$, 16-pin TQFN-EP packages, and is specified for operation over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive temperature range.

Ordering Information appears at end of data sheet.

Benefits and Features

\author{

- Small External Components
 $\diamond 2.2 \mathrm{MHz}$ Operating Frequency
 - Ideal for Point-of-Load Applications
 \diamond 4A Maximum Load Current
 \diamond Adjustable Output Voltage: 0.8V to 3.6V
 $\diamond 2.7 \mathrm{~V}$ to 5.5V Operating Supply Voltage
}
- High Efficiency at Light Load
$\diamond 26 \mu \mathrm{~A}$ Skip Mode Quiescent Current
- Minimizes Electromagnetic Interference
\diamond Programmable SYNC I/O Pin
\diamond Operates Above AM-Radio Band
\diamond Available Spread Spectrum
- Low Power Mode Saves Energy $\diamond 1 \mu \mathrm{~A}$ Shutdown Current
\diamond Open-Drain Power-Good Output
- Limits Inrush Current During Startup
\diamond Soft-Start
- Overtemperature and Short-Circuit Protections
- 4mm x 4mm, 16-Pin Thin QFN and 16-Pin TSSOP Packages
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Operating Temperature Range
Applications
Automotive Infotainment
Point-of-Load Applications
Industrial/Military

Typical Application Circuit

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim's website at www.maximintegrated.com.

4A, 2.2MHz, Synchronous Step-Down DC-DC Converter

ABSOLUTE MAXIMUM RATINGS

	-0.3V to +6V
EN, PG to GND ...	
PGND1 and PGND2 to GND-0.3V to +0.3V	
LX1, LX2 Continuous RMS Current (LX1 connected in Parallel with LX2).	
LX Current (LX1 connected in Parallel with LX2)..... $\pm 6 \mathrm{~A}$ ((ote 5)	
All Other Pins Voltages to GND .. (VPV $+0.3 \mathrm{~V})$ to ($\left.\mathrm{V}_{\mathrm{GND}}-0.3 \mathrm{~V}\right)$	
Output Short-Circuit Duration	Continuous

*As per JEDEC51 Standard (multilayer board).
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

TQFN
Junction-to-Ambient Thermal Resistance (θ_{JA}) $40^{\circ} \mathrm{C} / \mathrm{W}$
Junction-to-Case Thermal Resistance (θ_{JC}) \qquad $.6^{\circ} \mathrm{C} / \mathrm{W}$

Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
TQFN (derate $25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).	$2000 \mathrm{~mW}{ }^{*}$
TSSOP (derate $26.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).	2088.8mW*
Operating Temperature Range $40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Junction Temperature	$+150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s)	$+300^{\circ} \mathrm{C}$
Soldering Temperature (reflow)	$+260^{\circ} \mathrm{C}$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{PV}}=\mathrm{V}_{\mathrm{PV} 1}=\mathrm{V}_{\mathrm{PV} 2}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Range	VPV	Normal operation	2.7		5.5	V
Supply Current	IPV	No load, VPWM $=0 \mathrm{~V}$	12	26	45	$\mu \mathrm{A}$
Shutdown Supply Current	ISHDN	VEN $=0 V, T A=+25^{\circ} \mathrm{C}$		1	5	$\mu \mathrm{A}$
Undervoltage Lockout Threshold Low	VUVLO_L		2.37			V
Undervoltage Lockout Threshold High	VUVLO_H				2.6	V
Undervoltage Lockout Hysteresis				0.07		V
SYNCHRONOUS STEP-DOWN DC-DC CONVERTER						
FB Regulation Voltage	VOUTS			800		mV
Feedback Set-Point Accuracy	Vouts	ILOAD $=4 \mathrm{~A}$	-3.7	0	+2.6	\%
		ILOAD $=0 \mathrm{~A}$	-1.9		+2.6	
pMOS On-Resistance	RDSON_P	VPV1 $=5 \mathrm{~V}, \mathrm{ILX}-=0.4 \mathrm{~A}$, LX1 in parallel with LX2		34	55	$\mathrm{m} \Omega$
nMOS On-Resistance	RDSON_N	VPV1 $=5 \mathrm{~V}, \mathrm{ILX}-=0.8 \mathrm{~A}$, LX1 in parallel with LX2		25	45	$\mathrm{m} \Omega$

4A, 2.2MHz, Synchronous Step-Down DC-DC Converter

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{P V}=V_{P V 1}=V_{P V 2}=5 \mathrm{~V}, \mathrm{~V}_{E N}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{J}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. $)($ Note 2)

Maximum pMOS Current-Limit Threshold	ILIMP1	LX1 and LX2 shorted together	5.2	6.8	8.5	A
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Maximum Output Current	IOUT	(VOUT + 0.5V \leq VPV1 $\leq 5.5 \mathrm{~V}$) (Note 3)	4.4			A
OUTS Bias Current	IB_OUTS	Fixed output voltage variants	1	2	5	$\mu \mathrm{A}$
		Adjustable output version	-1		+1	
LX_ Leakage Current	ILX_LEAK	$\begin{aligned} & \text { VPV }=5 \mathrm{~V}, \mathrm{LX}_{-}=\mathrm{PGND}_{-} \text {or } \mathrm{PV} V_{-}, \\ & \mathrm{TA}=+25^{\circ} \mathrm{C} \end{aligned}$	-1		+1	$\mu \mathrm{A}$
Minimum On-Time	tON_MIN			60		ns
LX Discharge Resistance	RLX	VEN $=0 V$, through the OUTS pin	15	24	55	Ω
Maximum Short-Circuit Current					10.4	A
OSCILLATOR						
Oscillator Frequency	fSW	Internally generated	2.0	2.2	2.4	MHz
Spread Spectrum	$\Delta \mathrm{f} / \mathrm{f}$	Spread-spectrum enabled		+6		\%
SYNC Input Frequency Range	fSYNC	50% duty cycle (Note 4)	1.7		2.4	MHz
THERMAL OVERLOAD						
Thermal Shutdown Threshold				+165		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis				15		${ }^{\circ} \mathrm{C}$
POWER-GOOD OUTPUT (PG)						
PG Overvoltage Threshold	PGovth	Percentage of nominal output	106	110	114	\%
PG Undervoltage Threshold	PGUVTH	Percentage of nominal output	90	92	94	\%
PG Timeout Period				16		ms
Undervoltage/Overvoltage Propagation Delay				28		$\mu \mathrm{S}$
Output High Leakage Current		$\mathrm{TA}=+25^{\circ} \mathrm{C}$			0.2	$\mu \mathrm{A}$
PG Output Low Voltage		ISINK $=3 \mathrm{~mA}$			0.4	V
		$\mathrm{VPV}=1.2 \mathrm{~V}, \mathrm{ISINK}=100 \mu \mathrm{~A}$			0.4	
ENABLE INPUTS (EN)						
Input Voltage High	VINH	Input rising	2.4			V
Input Voltage Low	VINL	Input falling			0.5	V
Input Hysteresis				0.85		V
Input Current		VEN = high	0.1	1.0	2	$\mu \mathrm{A}$
Pulldown Resistor		VEN = low	50	100	200	k ת
DIGITAL INPUTS (PWM, SYNC AS INPUT)						
Input Voltage High	VINH		1.8			V
Input Voltage Low	VINL				0.4	V

4A, 2.2MHz, Synchronous Step-Down DC-DC Converter

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{PV}}=\mathrm{V}_{\mathrm{PV} 1}=\mathrm{V}_{\mathrm{PV} 2}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX
UNITS					
Input Voltage Hysteresis			50		mV
Pulldown Resistor			50	100	200
DIGITAL OUTPUT (SYNC AS OUTPUT)	$\mathrm{k} \Omega$				
Output Voltage Low	VOL	ISINK $=3 \mathrm{~mA}$		0.4	V
Output Voltage High	VOH	$\mathrm{VPV}=5 \mathrm{~V}$, ISOURCE $=3 \mathrm{~mA}$	4.2	V	

Note 2: All limits are 100% production tested at $+25^{\circ} \mathrm{C}$. Limits over temperature are guaranteed by design.
Note 3: Calculated value based on an assumed inductor current ripple of 30%.
Note 4: For SYNC frequency outside $(1.7,2.4) \mathrm{MHz}$, contact factory.
Note 5: LX_ has internal clamp diodes to PGND_ and IN_. Applications that forward bias these diodes should take care not to exceed the IC's package power dissipation limits.

Typical Operating Characteristics

$\left(V_{P V}=V_{P V 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

MAX16962
 4A, 2.2MHz, Synchronous Step-Down DC-DC Converter

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Vout vs. Vpv (PWM)

$100 \mu \mathrm{~s} / \mathrm{div}$

IPv vs. VPv (SKIP)

fsw vs. TEMPERATURE

Ipv vs. TEMPERATURE

4A, 2.2MHz, Synchronous Step-Down DC-DC Converter

Pin Configurations

Pin Descriptions

PIN		NAME	FUNCTION
TQFN	TSSOP		
1	3	LX2	Switching Node 2. LX2 is high impedance when the converter is off.
2	4	PGND2	Power Ground 2
3	5	PGND1	Power Ground 1
4	6	LX1	Switching Node 1. LX1 is high impedance when the converter is off.
5	7	PV1	Input Supply 1. Bypass PV1 with at least a 4.7μ F ceramic capacitor to PGND1. Connect PV1 to PV2 for normal operation.
6	8	EN	Enable Input. Drive EN high to enable converter. Drive EN low to disable converter.
7	9	OUTS	Feedback Input (Adjustable Output Option Only). Connect an external resistive divider from VOUT to OUTS and GND to set the output voltage. See Figure 2.
8	10	PG	Power-Good Output. Open-drain output. PG asserts when VoUT drops below 8% or rises above 10% of the nominal output voltage. Connect to a $20 \mathrm{k} \Omega$ pullup resistor.
$\begin{gathered} 9, \\ 13-15 \end{gathered}$	$\begin{gathered} 1,11 \\ 15,16 \end{gathered}$	GND	Ground
10	12	PWM	PWM Control Input. Drive PWM high to put converters in forced-PWM mode. Drive PWM low to put converters in SKIP mode.
11	13	SYNC	Factory-Set Sync Input or Output. As an input, SYNC accepts a 1.7 MHz to 2.4 MHz external clock signal. As an output, SYNC outputs a 90° phase-shifted signal with respect to internal oscillator.

4A, 2.2MHz, Synchronous Step-Down DC-DC Converter

Pin Descriptions (continued)

PIN		NAME	
TQFN	TSSOP		
12	14	PV	Device Supply Voltage Input. Bypass with at least a $1 \mu F$ ceramic capacitor to GND. In addition, connect a 10 Ω decoupling resistor between PV and the bypass capacitor.
16	2	PV2	Input Supply 2. Bypass PV2 with at least a 4.7 PV1 for normal operation.
-	-	EP	Exposed Pad. Connect EP to a large-area contiguous copper ground plane for effective power dissipation. Do not use as the only IC ground connection. EP must be connected to GND.

Detailed Description

The MAX16962 is a high-efficiency, synchronous stepdown converter that operates with a 2.7 V to 5.5 V input voltage range and provides a 0.8 V to 3.6 V output voltage range. The MAX16962 delivers up to 4A of load current and achieves $-3.7 \% /+2.6 \%$ output error over load, line, and temperature ranges.
The PWM input forces the MAX16962 into either a fixedfrequency, 2.2 MHz PWM mode or a low-power pulse frequency modulation mode (SKIP). Optional spreadspectrum frequency modulation minimizes radiated electromagnetic emissions due to the switching frequency. The factory programmable synchronization I/O (SYNC) enables system synchronization.
Integrated low RDSON switches help improve efficiency at heavy loads and make the layout a much simpler task with respect to discrete solutions.
The device is offered with factory-preset output voltages that achieve $-3.7 \% /+2.6 \%$ output voltage accuracy without using external resistors. In addition, the output voltage can be set to any desired values between 0.8 V to 3.6 V using an external resistive divider wth the adjustable option.
Additional features include 8 ms soft-start, 16 ms powergood delay output, overcurrent, and overtemperature protections. See Figure 1.

Power-Good Output
The MAX16962 features an open-drain power-good output that asserts when the output voltage drops 8% below or rises 10% above the regulated voltage. PG remains asserted for a fixed 16 ms timeout period after the output rises up to its regulated voltage. Connect PG to OUTS with a $20 \mathrm{k} \Omega$ resistor.

Soft-Start
The MAX16962 includes an 8ms fixed soft-start time. Soft-start time limits startup inrush current by forcing the output voltage to ramp up over time towards its regulation point.

Spread-Spectrum Option

The MAX16962 featuring spread-spectrum (SS) operation varies the internal operating frequency up by SS $=6 \%$ relative to the internally generated operating frequency of 2.2 MHz (typ). This function does not apply to externally applied oscillation frequency. The internal oscillator is frequency modulated with a 6\% frequency deviation. See the Selector Guide for available options.

Synchronization (SYNC) SYNC is a factory-programmable I/O. See the Selector Guide for available options. When SYNC is configured as an input, a logic-high on PWM enables SYNC to accept signal frequency in the range of $1.7 \mathrm{MHz}<\mathrm{f}_{\text {SYNC }}$ $<2.4 \mathrm{MHz}$. When SYNC is configured as an output, a logic-high on PWM enables SYNC to output a 90° phaseshifted signal with respect to internal oscillator.

Current-Limit/Short-Circuit Protection

 The MAX16962 features current limit that protects the device against short-circuit and overload conditions at the output. In the event of a short-circuit or overload condition, the high-side MOSFET remains on until the inductor current reaches the high-side MOSFET's cur-rent-limit threshold. The converter then turns on the lowside MOSFET to allow the inductor current to ramp down. Once the inductor current crosses the low-side MOSFET current-limit threshold, the converter turns on the highside MOSFET for minimum on-time periode. This cycle repeats until the short or overload condition is removed.
4A, 2.2MHz, Synchronous Step-Down DC-DC Converter

Figure 1. Internal Block Diagram

FPWM/SKIP Modes
The MAX16962 features an input (PWM) that puts the converter either in SKIP mode or forced-PWM (FPWM) mode of operation. See the Pin Descriptions for mode detail. In FPWM mode, the converter switches at a constant frequency with variable on-time. In skip mode, the converter's switching frequency is load-dependent until the output load reaches the SKIP threshold. At higher load current, the switching frequency does not change and the operating mode is similar to the FPWM mode. SKIP mode helps improve efficiency in light-load applications by allowing the converters to turn on the high-side
switch only when needed to maintain regulation. As such, the converter does not switch MOSFETs on and off as often as is the case in the FPWM mode. Consequently, the gate charge and switching losses are much lower in SKIP mode.

Overtemperature Protection
Thermal overload protection limits the total power dissipation in the MAX16962. When the junction temperature exceeds $+165^{\circ} \mathrm{C}$ (typ), an internal thermal sensor shuts down the internal bias regulator and the step-down controller, allowing the IC to cool. The thermal sensor turns on the IC again after the junction temperature cools by $15^{\circ} \mathrm{C}$.

4A, 2.2MHz, Synchronous Step-Down DC-DC Converter

Table 1. Inductor Values vs. (V_{IN} - $\mathrm{V}_{\text {OUT }}$)

$\mathbf{V}_{\text {IN }}-\mathbf{V}_{\text {OUT }}(\mathbf{V})$	5.0 to 3.3	5.0 to 2.5	5.0 to 1.5	3.3 to 0.8
INDUCTOR $(\boldsymbol{\mu H})$	0.8	0.6	0.47	0.33

Figure 2. Adjustable Output Voltage Setting

Applications Information

Setting the Output Voltage

Connect OUTS to VOUT for factory programmed output voltage.(See the Selector Guide.) To set the output to other voltages between 0.8 V and 3.6 V , connect a resistive divider from output (VOUT) to OUTS to GND (Figure 2). Select R2 (OUTS to GND resistor) less than or equal to $100 \mathrm{k} \Omega$. Calculate R1 (V $\mathrm{V}_{\text {OUT }}$ to OUTS resistor) with the following equation:

$$
\begin{aligned}
& \mathrm{R} 1=\mathrm{R} 2\left[\left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {OUTS }}}\right)-1\right] \\
& \text { where } \frac{\mathrm{R} 1 \times \mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2} \leq 7.5 \mathrm{k} \Omega
\end{aligned}
$$

where VOUTS $=800 \mathrm{mV}$ (see the Electrical Characteristics table).
The external feedback resistive divider must be frequency compensated for proper operation. Place a capacitor across each resistor in the resistive divider network. Use the following equation to determine the value of the capacitors:

$$
\mathrm{C} 1=10 \mathrm{pF}\left(\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)
$$

Inductor Selection

Three key inductor parameters must be specified for operation with the MAX16962: inductance value (L), inductor saturation current (ISAT), and DC resistance ($R_{D C R}$). Use the following formulas to determine the minimum inductor value:

$$
L_{\mathrm{MIN1}}=\left[\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}_{-}}\right) \times\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{IN}}}\right) \times\left(\frac{3}{\mathrm{f}_{\mathrm{OP}} \times 4 \mathrm{~A}}\right)\right]
$$

where $f_{O P}$ is the operating frequency. This value is 2.2 MHz unless externally synchronized to a different frequency.
The next equation ensures that the inductor curent downslope is less than the internal slope compensation. For this to be the case, the following equation needs to be satisfied:

$$
-m \geq \frac{m 2}{2}
$$

where m 2 is the inductor current downslope:

$$
\left[\frac{\text { Vout_ }_{-}}{\mathrm{L}}\right]
$$

and $-m$ is the slope compensation:

$$
\left[\frac{0.8 \times \operatorname{lmax}}{\mu \mathrm{S}}\right]
$$

Solving for L:

$$
\mathrm{L}_{\mathrm{MIN} 2}=\mathrm{V}_{\mathrm{OUT}} \times \frac{\mu \mathrm{s}}{1.6 \times 4 \mathrm{~A}}
$$

The equation that provides the bigger inductor value must be chosen for proper operation:

$$
\mathrm{L}_{\mathrm{MIN}}=\max \left(\mathrm{L}_{\mathrm{MIN} 1}, \mathrm{~L}_{\mathrm{MIN} 2}\right)
$$

The maximum inductor value recommended is twice the chosen value from the above formula.

$$
L_{M A X}=2 \times L_{M I N}
$$

4A, 2.2MHz, Synchronous Step-Down DC-DC Converter

Input Capacitor

The input filter capacitor reduces peak currents drawn from the power source and reduces noise and voltage ripple on the input caused by the circuit's switching.
The input capacitor RMS current requirement (IRMS) is defined by the following equation:

$$
I_{R M S}=I_{\mathrm{LOAD}(\mathrm{MAX})} \frac{\sqrt{\mathrm{V}_{\mathrm{OUT}}\left(\mathrm{~V}_{\mathrm{PV} 1}-\mathrm{V}_{\mathrm{OUT}}\right)}}{\mathrm{V}_{\mathrm{PV} 1}}
$$

$I_{\text {RMS }}$ has a maximum value when the input voltage equals twice the output voltage ($\mathrm{VPV}_{1}=2 \mathrm{~V}_{\text {OUT }}$), so $I_{\text {RMS }}($ MAX $)=l_{\text {LOAD }}($ MAX $) / 2$.
Choose an input capacitor that exhibits less than $+10^{\circ} \mathrm{C}$ self-heating temperature rise at the RMS input current for optimal long-term reliability.
The input-voltage ripple is composed of ΔV_{Q} (caused by the capacitor discharge) and $\Delta \mathrm{V}_{\mathrm{ESR}}$ (caused by the ESR of the capacitor). Use low-ESR ceramic capacitors with high-ripple current capability at the input. Assume the contribution from the ESR and capacitor discharge equal to 50%. Calculate the input capacitance and ESR required for a specified input voltage ripple using the following equations:

$$
\mathrm{ESR}_{\mathrm{IN}}=\frac{\Delta \mathrm{V}_{\mathrm{ESR}}}{\mathrm{I}_{\mathrm{OUT}}+\frac{\Delta \mathrm{I}_{\mathrm{L}}}{2}}
$$

where:

$$
\Delta \mathrm{l}_{\mathrm{L}}=\frac{\left(\mathrm{V}_{\mathrm{PV} 1}-\mathrm{V}_{\mathrm{OUT}}\right) \times \mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{PV} 1} \times f_{\mathrm{SW}} \times \mathrm{L}}
$$

and:

$$
\mathrm{C}_{\mathrm{IN}}=\frac{\mathrm{I}_{\mathrm{OUT}} \times \mathrm{D}(1-\mathrm{D})}{\Delta \mathrm{V}_{\mathrm{Q}} \times \mathrm{f}_{\mathrm{SW}}} \text { and } \mathrm{D}=\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{PV} 1}}
$$

where IOUT is the maximum output current, and D is the duty cycle.

It is strongly recommended that a $4.7 \mu \mathrm{~F}$ small footprint be placed close to PV1 and PV2 and a minimum of 100nF small footprint be placed close to PV. Using a small footprint such as 0805 or smaller helps to reduce the total parasitic inductance.

Output Capacitor

The minimum capacitor required depends on output voltage, maximum device current capability, and the error-amplifier voltage gain. Use the following formula to determine the required output capacitor value:

$$
\begin{array}{r}
\mathrm{C}_{\text {OUT(MIN })}=\frac{\mathrm{V}_{\text {REF }} \times \mathrm{G}_{\mathrm{EAMP}}}{2 \pi \times \mathrm{f}_{\mathrm{CO}} \times \mathrm{V}_{\mathrm{OUT}} \times \mathrm{R}_{\mathrm{CS}}} \\
\quad=\frac{0.8 \mathrm{~V} \times 31.7}{2 \pi \times 210 \mathrm{kHz} \times \mathrm{V}_{\mathrm{OUT}} \times 139 \mathrm{~m} \Omega}
\end{array}
$$

where f CO , the target crossover frequency, is 210 kHz , GEAMP, the error-amplifier voltage gain, is $31.7 \mathrm{~V} / \mathrm{V}$, and $R_{C S}$ is $139 \mathrm{~m} \Omega$.

PCB Layout Guidelines
Careful PCB layout is critical to achieve low switching losses and clean, stable operation. Use a multilayer board whenever possible for better noise immunity and power dissipation. Follow these guidelines for good PCB layout:

1) Use a large contiguous copper plane under the MAX16962 package. Ensure that all heat-dissipating components have adequate cooling. The bottom pad of the MAX16962 must be soldered down to this copper plane for effective heat dissipation and maximizing the full power out of the MAX16962. Use multiple vias or a single large via in this plane for heat dissipation.
2) Isolate the power components and high current path from the sensitive analog circuitry. This is essential to prevent any noise coupling into the analog signals.
3) Add small footprint blocking capacitors with low self-resonance frequency close to PV1, PV2, and PV.
4) Keep the high-current paths short, especially at the ground terminals. This practice is essential for stable, jitter-free operation. The high current path composed of input capacitors at PV1, PV2, inductor, and the output capacitor should be as short as possible.

4A, 2.2MHz, Synchronous Step-Down DC-DC Converter
5) Keep the power traces and load connections short. This practice is essential for high efficiency. Use thick copper PCBs (2oz vs. 1oz) to enhance full-load efficiency.
6) OUTS are sensitive to noise for devices with external feedback option. The resistive network, R1, R2, and C1 must be placed close to OUTS and far away from the LX_ node and high switching current paths. The ground node of R2 must be close to GND.

Chip Information
PROCESS: BiCMOS
7) The ground connection for the analog and power section should be close to the IC. This keeps the ground current loops to a minimum. In cases where only one ground is used enough isolation between analog return signals and high power signals must be maintained.

Package Information
For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "\#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
16 TQFN-EP	$\mathrm{T} 1644+4$	$\underline{21-0139}$	$\underline{90-0070}$
16 TSSOP-EP	$\mathrm{U16E}+3$	$\underline{21-0108}$	$\underline{90-0120}$

4A, 2.2MHz, Synchronous Step-Down DC-DC Converter

Selector Guide

ROOT PART	PACKAGE SUFFIX	OPTION SUFFIX	OUTPUT VOLTAGE	SPREAD SPECTRUM	SYNC IN/OUT
MAX16962	RAUE	A/N+	Ext. Adj.	Disabled	In
MAX16962	SAUE	A/V+	Ext. Adj.	Enabled	In
MAX16962	RATE	A/N+	Ext. Adj.	Disabled	In
MAX16962	SATE	A/N+	Ext. Adj.	Enabled	In

Note: Contact the factory for variants with different output-voltage, spread-spectrum, and power-good delay time settings.

Ordering Information

PART	TEMP RANGE	LOAD CURRENT CAPABILITY (A)	PIN-PACKAGE
MAX16962_ATE $/ \mathrm{V}_{+}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	4	16 TQFN-EP*
MAX16962_AUE $\wedge+$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	4	16 TSSOP-EP*

Note: " "" is a package suffix placeholder for either " R " or " S," as shown the Selector Guide. The second "_" is in the option suffix. N denotes an automotive qualified part.
+Denotes a lead(Pb)-free/RoHS-compliant package.
*EP = Exposed pad.

4A, 2.2MHz, Synchronous Step-Down DC-DC Converter

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	7/12	Initial release	-
1	9/13	Updated Electrical Characteristics table, TOCs 1, 2, and 4, equation in the Setting the Output Voltage section, step 6 in the PCB Layout Guidelines, and the Ordering Information section	3-5, 9-11
2	5/14	Added FB regulation voltage specifications and updated V_{PV} condition in Electrical Characteristics table; corrected equations and updated Table 2 in the Inductor Selection and Output Capacitor sections; updated Ordering Information	2, 3, 9-11
3	7/15	Added formula to equation in the Setting the Output Voltage section, replaced the Output Capacitor section, and deleted Table 2	9, 10

[^0]Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

[^0]: Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

